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Abstract-  

We have devised a system to automatically detect, manage 
and track contacts with a stationary line array.  The array has a 
large number of elements, and the ability to process any subset of 
these elements (up to a fixed number) at any given time. 
Detection is accomplished by fixed detection apertures spaced 
along the array such that the apertures create a “tripwire” range 
parallel to the length of the array. Contacts crossing the tripwire 
range are handed off to an automated tracking aperture which 
adjusts its aperture size and aperture center along the array to 
track the contact using the best subset of elements.  The adaptive 
detection scheme conserves limited tracker resources by limiting 
the trackers to those contacts which appear to be heading 
towards the line array. This system has been0 implemented on a 
Mercury Adapdev system and has been tested using simulation of 
multiple approaching contacts with interfering distant contacts. 

I. INTRODUCTION 

We have devised a system to automatically detect, manage 
and track contacts with a stationary line array. The array has a 
large number of elements, and the ability to process any subset 
of these elements (up to a fixed number) at any given time.  
 
The detection scheme is designed to conserve limited tracker 
resources by limiting the trackers to contacts that appear to be 
heading towards the line array.  Detection is accomplished by 
automated broadband energy followers operating on fixed 
detection apertures spaced along the array such that the 
apertures create a “tripwire” range parallel to the length of the 
array. A detection management system was built to handle the 
detection aperture contacts. Contact followers (CF) are 
automatically assigned to all detections in these apertures. The 
detection system can track numerous contacts in bearing and 
range in both near field and far field in each detection aperture.  
 
Contacts that cross into the tripwire range and are closing are 
handed off to a tracking aperture, which adjusts its location 
along the array to track the contact using the best subset of 
elements. Candidate CF’s are used as detections to 
automatically assign the range-focused trackers. The tracker 
aperture is then allowed to “rove” along the length of the array 
to keep up with contact dynamics. The tracker also adjusts its 
aperture size with the changing range of the contact. The 
tracker incorporates its own range-focused beamformer 
utilizing a three beam interpolation in azimuth and inverse-
range space. It uses an adaptive gain alpha-beta filter for state 
estimates. The predicted state estimates provide range and 
bearing estimates to reset the tracker beamformer aperture to 
the new position. There are a limited number of these trackers 
since they require front-end beamformer functionality and run 
at a faster rate to handle contact dynamics.  The track 

management function oversees the tracker, and adds and drops 
them based on multiple criteria such as contact opening or 
closing and signal to noise information. 
 
This system is implemented on a Mercury Adapdev system 
and has been tested using simulation of multiple approaching 
contacts with interfering distant contacts. 
 
This paper focuses on the tripwire detection and localization 
scheme. In Section II, the range focused tripwire concept is 
developed in detail. Section III discusses the application of the 
tripwire to the long line array detection system. Section IV 
shows simulation results. 

II. RANGE FOCUSED TRIPWIRE PROCESSING 

A. Range Focused Beamforming 
A key concept in the definition of this detection scheme is 
design of the focus range sets for a long line array, specifically 
line arrays of sufficient length such that the near field extends 
out past ranges of practical importance 

tsignificanR
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  Where L is the aperture length; f is frequency and C is the 
speed of sound in water as defined in [1]. 
 
In order to provide full coverage of ranges of practical 
importance that would be degraded by a plane wave (infinite 
range) beam set, one or more beam sets focused at closer finite 
ranges will be required.  Define a focus range set ( )θjR  as 
specifying a set of ranges as a function of bearing θ referenced 
to the center of a line array. Let j = {0, 1, 2, …, N} be integers 
representing nested consecutive focus range sets such that 

( ) ( ) ( ) ( ) 1800:....210 ≤≤∀≥≥≥≥ θθθθθθ jRRRR  

The focus range set ( )θjR  , j= {0, 1, 2, … N} represent range 
and bearing coverage with respect to a line array. The farthest 
range as a function of bearing coverage is specified by ( )θ0R  
and the closest range as a function of bearing coverage is 
specified by ( )θNR . 

We begin our study of focus range design by examining the 
time delay equation between a point in space (bearing θ and 
range R) and an array element. This analysis will yield insight 
into focus range design. [2], [3], and [4] contain additional 
treatments of range focusing. 
We will assume a long line array centered on the x-axis. The 
point in space which we wish to beamform to is assumed to be 
at a range R from the center of the line array and at an angle θ 
from the center of the line array. Let di be the ith sensor 
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location on the line array. Fig. 1 illustrates this geometry. 
Using the law of cosines we can write the following equation 
representing the coherent contact signal’s time of arrival 
difference τi between sensor di and the center of the line array, 
given speed of sound C. 

( )
C

ddRRR
R ii
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22 cos2
,

+⋅⋅⋅−−
=

θ
θτ  (1) 

 
Figure 1: Near field geometry 

The following trick results in a very accurate approximation 
and yields insight into focused beamforming. For the purposes 
of this study, and in order to support the two approximations 
to follow, we shall assume that θcos⋅>> idR , that is, the 
range is much larger than the array element spacing. 
   
A little algebra, completing the square, and using of the 
identity 1cossin 22 =+ θθ  yields the following 
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Factoring out the dominant term yields 
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Now we apply the following approximation to (3) 
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Which yields 
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and finally after some algebra 
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Equation (6) can be approximated as 
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The first term is the standard delay for plane wave 
beamforming of a far field contact at angle θ to the center of 
the line array. The second term is the time delay correction for 
a near field contact at range R from the line array. The second 
term is of primary interest. This term is effectively added to a 
plane wave beamformer to produce a focus beam at range R 
and bearing θ. 
 
 
We will now look at the time delay difference between a beam 
in focus range j focused to range ( )θjR and bearing θ and a 
focus range j+1 focused to range ( )θ1+jR  and bearing θ. 
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Now if we require the scalloping loss, i.e., the maximum 
reduction in power between any pair of beams focused on the 
same bearing in adjacent focus range sets, to be constant for 
all bearings θ  and all focus range sets j , then we require  
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Let us define a constant parameter ∆ as shown below: 
 

( ) ( )90
1

90
1

1 jj RR
−=∆

+
                          (10) 

 
The parameter ∆ specifies the desired spacing between focus 
range sets at 900 to be a constant ∆  and thus effectively 
specifies the desired range scalloping loss between adjacent 
focus ranges sets. 
 
We can now define the relationship between the focus ranges 
of each pair of beams in adjacent focus range sets as shown 
below, resulting in a fixed range scalloping loss with respect 
to focus range set ( )θ1+jR  for all common bearing angles θ. 
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              (11) 

 

B. One Degree of Freedom 
 
Given a particular focus range set ( )θjR , the following 
relationship with the other focus range sets will guarantee a 
fixed range scalloping loss at common bearing angle θ 
between all adjacent focus range sets at all bearing angles. 
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There is no implied restriction on the definition of focus range 
set ( )θjR , except ( )θjR can not equal 0. We will allow focus 
ranges to become large negative ranges (beyond infinite range) 
for now. Looking at (12) it becomes apparent that we can 
arbitrarily define the range versus bearing of one focus range 
set and then under the assumption of equal scalloping loss 
everywhere the other focus range sets will be determined. 
Thus we claim that the definitions of focus range sets with the 
property of maintaining the same fixed scalloping loss 
between adjacent focus range sets at common bearing angles 
has one degree of freedom, i.e., the definition of one of the 
focus range sets. In theory there are an infinite number of 
possible definitions of focus range sets. We shall concern 
ourselves with the important class of focus range set definition 
where we maintain a constant power response at a given range 

fixR for all bearing angles θ. (Note that fixR does not have to 

be a member of any of the defined focus range sets jR .) The 
natural algorithm of forming a plane wave beamformer at 
infinite range followed by a number of closer finite focus 
ranges is a subset of this class. 
 

C. Constant Power Response at a Fixed Range Across Bearing 
 
We shall now derive expressions that define focus range sets 
that contain a constant power response at a fixed range for all 
bearings.  
 
With  (10) in mind the following equation satisfies  (11) for all 
focus range sets represented by the integers j=0, 1, 2, …N 
where ( )θ0R  is the farthest focus range set. 
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Let i=0 and thus ( )θ0R  is the farthest focus range set. 
Equation (13) can be rewritten as follows. 
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Note that j  is effectively a linear function of focus range set 
index. Integer values of j  correspond to focus range sets we 
have designed to have a fixed scalloping loss between 
adjacent sets for all bearings. j  has the range of Nj ≥≥0  
where 0=j  is the farthest focus range set and Nj =  is the 
nearest focus range set. 

 
For convenience we will define the range fixR where we want 
to have a constant power response in terms of the parameter ∆ 
and a selectable parameter b. 
 

∆⋅= b
R fix

1      (15) 

 
We will now define where we want to place fixR with respect 

to our focus range sets j=0, 1, 2, …, N We will place fixR at a 

range set index of “a” Therefore ( ) fixa RR =θ  and using  (14) 
we can write the following equation. 
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a
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−
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If we now solve  (16) for ( )θ0

1
R

 we have the following 

( ) ( )θθ 20 sin
11 ∆⋅−= a

RR fix
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Substituting (17) and (15) into  (14) we have 
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Solving for ( )θjR  we have 
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D. Observations 
 
For j > a, the focus ranges ( )θjR  will decrease as θ moves 
away from 900. For focus range indices j < a the focus ranges 

( )θjR   will increase as θ moves away from 900. In fact they 

will achieve infinite range (plane wave) when ( )
b

ja −=θ2sin . 

As θ continues to move further away from 900 the ranges will 
become finite and negative. There is nothing wrong with this 
mathematically or in practice. The negative ranges will be in 
focus at no realizable positive range, but will maintain the 
correct relationship with the other focus range sets. In practice 
a designer may wish to limit negative focus ranges to infinite 
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range and abandon the design relationship with the adjacent 
closer focus range set. 
 

E. Practical Designs 
 
 For many practical designs the choice of fixR  would be one 
of the natural focus range sets (we would want one of our 
focus range sets to at a constant range as a function of bearing.) 
In this case the parameter “a” would be one of the integers 
between 0 and N. A more interesting, and in our case, more 
useful choice is to make the scalloping range between two 
focus range sets be at a constant range as a function of bearing. 
This implies that contacts more focused in more distant focus 
range sets would be at a range greater then fixR  independent 
of bearing and contacts more focused in closer focus range 
sets would be at a range less then fixR  independent of bearing 
and contacts. For this case the parameter a  could take on the 
values {-1/2, 1/2, 1+1/2, 2+1/2, …, N+1/2}. 
 
For many reasons it may not be desirable to set the farthest 
focus range to infinite range at 900 (R0(900)). A reasonable 
alternative is to set the range corresponding to a bearing of 900 
to have a power loss at infinite range equal to the scalloping 
loss. Set j=0, θ=900 and R0(900) =2/∆ in  (19) to obtain the 
correct relationship between the parameters a and b for this 
case. 

2
1=− ab                          (20) 

Under this condition the relationship between the parameter a  
and the range fixR  of constant power can be obtained by 
substituting (20) into  (19) and letting aj = . 

( )5.
1

+⋅∆
=

a
R fix                                   (21) 

Finally the standard definition of focus range sets with the 
farthest focus range set being set at infinite range for all 
bearings (plane wave beamformer) can be obtained from  (19) 
by setting 0=a  and 0=b  resulting in 

( ) ( ) Nj
j

R j ...,2,1,0,sin 2
=

⋅∆
= θθ             (22) 

Note j=0 corresponds to infinite range i.e. a plane wave 
beamformer. 
 

F. Summary 
 

1) Selecting the parameter ∆ specifies the desired 
scalloping loss between adjacent focus ranges. 

2) Maintaining the following relationship between 
adjacent focus ranges guarantees a constant 
scalloping loss at all bearings 
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3) Defining focus ranges for each focus range set by the 
following equation guarantees a constant scalloping 
loss at all bearings between adjacent focus range sets 
but also specifies a given focus range where the 
power response is constant for all bearings. 
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4) Careful selection of the parameters “a” and “b” allow 
customizing the focus range sets to meet particular design 
goals. 

 
III. APPLICATION TO LONG LINE ARRAY TRIPWIRE 

DETECTION 

The range focused tripwire concept was applied to the 
problem of automated detection on a long line array with a 
large number of elements. In this case, the detection system is 
required to sort out contacts and pass on to the track 
management system only those meeting the profile of being in 
close proximity and closing on the array. As a result, two 
range focus beam sets were chosen, near-field and far-field, 
based on the choice of a tripwire range set defining the 
proximity at which the contact should be assigned to a tracker. 

Given the desired tripwire range, fixR , we select 2/1=a  to 
set the constant range tripwire between range 0 and range 1.  
As discussed above, these conditions determine the focus 
ranges for ( )θ0R  and ( )θ1R , sketched in Fig. 2. 

 
 

 
Figure 2: Tripwire detection scheme 

   In our application the ranges appear as in Fig. 3. Note that 
the decision to use fixed far field ranges instead of the 
negative ranges discussed in Section II result in curved 
regions of the tripwire range near endfire. Practically speaking, 
ranging performance is best for those beams focused on angles 
within approximately 30 degrees of broadside.  Thus, a single 
detection aperture provides excellent coverage of the tripwire 
range within a 60 degree wide azimuthal swath as shown in 
Fig. 4. 
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Figure 3: Tripwire range sets for long line array 

The length of the array allows for multiple detection 
apertures to be processed. The detection apertures are spaced 
along the array as shown in Fig. 5 and the detection manager 
limits the extent of the beams in each detection aperture fan to 
support identifying the closest aperture as a contact passes 
inside the tripwire range, so that there is sufficient scalloping 
loss between the outer beams of adjacent apertures at the 
tripwire range.  

 

 
Figure 4: Single Detection Aperture 

 

 
Figure 5: Multiple Apertures Create Tripwire along the 
Length of the Array 

IV. SIMULATION RESULTS 

 
Two time cuts of beamformed data for an example scenario 

in a single aperture are shown in Fig. 6. (Note that the 
additional, inner, range window shown was added for use in 
the tracker manager, not discussed in this paper.) Four 
contacts were simulated; two were stationary (labeled 1 and 4 
in Fig. 6) and outside the tripwire range, while the two 
dynamic contacts started at 070 and 090 degrees respectively, 
relative to the aperture center and crossed over the line array. 
These contacts are labeled 2 and 3.  

The first time cut labeled “Approaching CPA” shows an 
early cut of the data. All four contacts are initially and 
correctly focused in the R0 (far) window, representing the 
furthest focus range. Looking at the R1 (mid) window, notice 
that the two outside contacts, which are furthest from the array, 
are more defocused than the closer, dynamic, contacts which 
become more focused over time as they move closer to the 
array. The defocusing is most pronounced in the innermost R2 
(near) window. 

The second time cut labeled “CPA” shows data from the 
same contacts around the time when the two dynamic contacts 
pass CPA (closest point of approach) directly over the array 
simultaneously. Both dynamic contacts are focused in the R1 
(mid) window for most of this time period, while the static 
contacts remain focused in the R0 (far) window. The first 
contact passes over at the left edge of the aperture, moving 
rapidly through the beams as it approaches and departs. The 
second contact passes directly over the center of the detection 
aperture, focusing in the R2 (near) window at the time closest 
to CPA and defocusing everywhere as it reaches CPA 
(partially a result of the fixed detection aperture.)  

V. SUMMARY 

 
We described the detection processing scheme used for a 

stationary long line array designed to automatically detect, 
manage and track contacts. A set of range focused beamsets 
were designed to provide a constant range tripwire for 
automated identification of  contacts approaching the line 
array and were replicated over multiple apertures along the 
length of the array. A simulation example was presented to 
illustrate the localization concepts of this approach. 
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Figure 6: Simulation Example showing multiple range windows for a single detection aperture. Contacts 1 and 4 are 

stationary far field contacts. Contacts 2 and 3 are approaching the array. Contact 2 crosses the array at CPA to the left of 
the detection aperture in the R1 window. Contact 3 crosses the array at CPA in the center of the detection aperture in the 

R2 window.
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